Wednesday, September 28, 2016

Osteoimmunological Aspects of Biomechanics

Reported by : Aviral Vatsa

Biomechanics is increasingly becoming the vital link between various biological modulations and physiological processes. Its quantification and 'predictable' nature makes biomechanical approach even more appealing.

Authours
  • Katharina Kerschan-Schindl 
  • Gerold Ebenbichler

Abstract

Different endogenous and exogenous factors which interfere with bone health have been identified. Among these, physical activity that relates to regular intermittent mechanical bone loading seems to be one of the major factors controlling bone mass and the prevention of osteoporotic fractures. Moreover, an interaction between bone homeostasis and the immune system which may be modified by regular physical activity exists. Bone and immune cells share a common site of origin, the bone marrow. They are supposed to influence each other not only during maturation; osteoclasts and immune cells have a number of regulatory molecules in common including cytokines, receptors, signalling molecules, and transcription factors, which influence each other.

Chapter
pp 109-124 Date: 
DOI 10.1007/978-3-319-34238-2_5

Thursday, May 12, 2016

Extracellular microvesicle microRNAs in children with sickle cell anaemia with divergent clinical phenotypes.

Reported by Aviral Vatsa


Abstract

Sickle cell anaemia (SCA) is the most frequent genetic haemoglobinopathy, which exhibits a highly variable clinical course characterized by hyper-coagulable and pro-inflammatory states, as well as endothelial dysfunction. Extracellular microvesicles are released into biological fluids and play a role in modifying the functional phenotype of target cells. We hypothesized that potential differences in plasma-derived extracellular microvesicles (EV) function and cargo from SCA patients may underlie divergent clinical trajectories. Plasma EV from SCA patients with mild, intermediate and severe clinical disease course were isolated, and primary endothelial cell cultures were exposed. Endothelial cell activation, monocyte adhesion, barrier disruption and exosome cargo (microRNA microarrays) were assessed. EV disrupted the endothelial barrier and induced expression of adhesion molecules and monocyte adhesion in a SCA severity-dependent manner compared to healthy children. Microarray approaches identified a restricted signature of exosomal microRNAs that readily distinguished severe from mild SCA, as well as from healthy children. The microRNA candidates were further validated using quantitative real time polymerase chain reaction assays, and revealed putative gene targets. Circulating exosomal microRNAs may play important roles in predicting the clinical course of SCA, and in delineation of individually tailored, mechanistically-based clinical treatment approaches of SCA patients in the near future
 2016 May 10. doi: 10.1111/bjh.14104. [Epub ahead of print]

Sunday, October 11, 2015

Mesenchymal stem cells use extracellular vesicles to outsource mitophagy and shuttle microRNAs.

Reported by Aviral Vatsa

 2015 Oct 7;6:8472. doi: 10.1038/ncomms9472.


Phinney DG1, Di Giuseppe M2, Njah J2, Sala E3, Shiva S4, St Croix CM2,4,5, Stolz DB5, Watkins SC5, Di YP2, Leikauf GD2, Kolls J6, Riches DW7, Deiuliis G8,Kaminski N8, Boregowda SV1, McKenna DH9, Ortiz LA2.

Abstract

Mesenchymal stem cells (MSCs) and macrophages are fundamental components of the stem cell niche and function coordinately to regulate haematopoietic stem cell self-renewal and mobilization. Recent studies indicate that mitophagy and healthy mitochondrial function are critical to the survival of stem cells, but how these processes are regulated in MSCs is unknown. Here we show that MSCs manage intracellular oxidative stress by targeting depolarized mitochondria to the plasma membrane via arrestin domain-containing protein 1-mediated microvesicles. The vesicles are then engulfed and re-utilized via a process involving fusion by macrophages, resulting in enhanced bioenergetics. Furthermore, we show that MSCs simultaneously shed micro RNA-containing exosomes that inhibit macrophage activation by suppressing Toll-like receptor signalling, thereby de-sensitizing macrophages to the ingested mitochondria. Collectively, these studies mechanistically link mitophagy and MSC survival with macrophage function, thereby providing a physiologically relevant context for the innate immunomodulatory activity of MSCs.



  • 1Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, Florida 33458, USA.
  • 2Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, USA.
  • 3Hospital Son Espases, Palma Mallorca 07010, Spain.
  • 4Department of Pharmacology, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, USA.
  • 5Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, USA.
  • 6Mellon Foundation Institute for Pediatric Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, USA.
  • 7Department of Pediatrics, National Jewish Health, Denver, Colorado 80206, USA.
  • 8Department of Medicine, Yale University, New Haven, Connecticut 06510, USA.
  • 9Department of Laboratory Medicine and Pathology, University of Minnesota, Saint Paul, Minnesota 55108, USA.

Wednesday, August 5, 2015

Gene regulation by dietary microRNAs

Reported by : Aviral Vatsa

Authors

 2015 Apr 14:1-6. [Epub ahead of print]

PMID: 
26222444 (pubmed link)

Abstract

MicroRNAs (miRNAs) silence genes through destabilizing mRNA or preventing translation of mRNA, thereby playing an essential role in gene silencing. Traditionally, miRNAs have been considered endogenous regulators of genes, i.e., miRNAs synthesized by an organism regulate the genes in that organism. Recently, that dogma has been challenged in studies suggesting that food-borne miRNAs are bioavailable and affect gene expression in mice and humans. While the evidence in support of this theory may be considered weak for miRNAs that originate in plants, there is compelling evidence to suggest that humans use bovine miRNAs in cow's milk and avian miRNAs in chicken eggs for gene regulation. Importantly, evidence also suggests that mice fed a miRNA-depleted diet cannot compensate for dietary depletion by increased endogenous synthesis. Bioinformatics predictions implicate bovine miRNAs in the regulation of genes that play roles in human health and development. Current challenges in this area of research include that some miRNAs are unable to establish a cause-and-effect between miRNA depletion and disease in miRNA knockout mice, and sequence similarities and identities for bovine and human miRNAs render it difficult to distinguish between exogenous and endogenous miRNAs. Based on what is currently known about dietary miRNAs, the body of evidence appears to be sufficient to consider milk miRNA bioactive compounds in foods, and to increase research activities in this field.

Saturday, June 20, 2015

Glutathione-mediated release of functional miR-122 from gold nanoparticles for targeted induction of apoptosis in cancer treatment.

Reported by: Aviral Vatsa

Authors:
 2014 Aug;14(8):5620-7.

Abstract

MiRs was efficiently bound to water-soluble positively charged gold nanoparticles through complementary electrostatic interaction. MiR-122 has been considered to be specifically expressed in liver and involved in inducing hepatocyte apoptosis through bcl-w pathway, which could be efficiently bound to water dispersible positively charged gold nanoparticles and conjugated with folic acid (FA) to target specific cancer cells, through complementary electrostatic interaction. These gold nanoparticles-miR-122-FA nanocomplexes (GMN) were disrupted and miR-122 was released by glutathione (GSH) at intracellular concentrations. In contrast, there was almost no detectable miR-122 released from GMN by extracellular concentration of GSH. The formation of GMN and GSH-mediated miR-122 release from the complexes were corroborated by dye displacement assay, electrophoresis experiment and transmission electron microscopy (TEM). With FA funcition, the GMN can target to the HepG2 cell membrane efficiently revealed by scanning electron microscopy (SEM). The released miR-122 retained apoptosis-inducing activity after being transfected into HepG2 cells. The transfection efficiency measured by MTT assay and flow cytometry was comparable with the positive control. We determined the effects of GMN on HepG2 cells viability and apoptosis by using fluorescence light microscopy and SDS-PAGE/immunoblots. The obvious concentration gradient of GSH in nature between the intra- and extracellular environments as well as the GSH concentration-dependent release suggest that these positively charged gold nanoparticles can be used as a novel visible vehicle for gene delivery and open up promising opportunities for target applications in the future.
PMID:
 
25935978
 
[PubMed - indexed for MEDLINE] Link




Monday, November 4, 2013

In vivo biosensing via tissue-localizable near-infrared-fluorescent single-walled carbon nanotubes

Reported by: Aviral Vatsa


Authors:

Nicole M. Iverson, Paul W. Barone, Mia Shandell, Laura J. Trudel, Selda Sen, Fatih Sen, Vsevolod Ivanov, Esha Atolia, Edgardo Farias, Thomas P. McNicholas, Nigel Reuel, Nicola M. A. Parry, Gerald N. WoganMichael S. Strano

Nature Nanotechnology doi:10.1038/nnano.2013.222

Abstract


Single-walled carbon nanotubes are particularly attractive for biomedical applications, because they exhibit a fluorescent signal in a spectral region where there is minimal interference from biological media. Although single-walled carbon nanotubes have been used as highly sensitive detectors for various compounds, their use as in vivo biomarkers requires the simultaneous optimization of various parameters, including biocompatibility, molecular recognition, high fluorescence quantum efficiency and signal transduction. Here we show that a polyethylene glycol ligated copolymer stabilizes near-infrared-fluorescent single-walled carbon nanotubes sensors in solution, enabling intravenous injection into mice and the selective detection of local nitric oxide concentration with a detection limit of 1 µM. The half-life for liver retention is 4 h, with sensors clearing the lungs within 2 h after injection, thus avoiding a dominant route of in vivo nanotoxicology. After localization within the liver, it is possible to follow the transient inflammation using nitric oxide as a marker and signalling molecule. To this end, we also report a spatial-spectral imaging algorithm to deconvolute fluorescence intensity and spatial information from measurements. Finally, we demonstrate that alginate-encapsulated single-walled carbon nanotubes can function as implantable inflammation sensors for nitric oxide detection, with no intrinsic immune reactivity or other adverse response for more than 400 days.

Thursday, February 21, 2013

Mechanosensation and Mechanotransduction: Our Connection to the Outside World


Author: Aviral Vatsa PhD MBBS
This is the first post in a series of posts on mechanosensation and mechanotransduction and their role in physiology and disease.

Future posts in this category will focus on various aspects of role of mechanosensation and mechanotransduction in human physiology. These aspects will include among others: gene modulation, cellular mechanosensation, tissue regeneration, stem cell differentiation, cancer, disease models, nanomodulation, material science and therapeutics etc.

Based on Zhang et al [1]

Multicellular organisms such as humans require intricate orchestration of signals between cells to achieve global morphogenesis and organ function and thus maintain haemostasis. Three major 'signalling modalities' work in unison intracellularly and/or exrtacellularly to regulate harmonious functioning of the physiological milieu. These 'modalities' namely biochemical molecules, electrical currents or fields and mechanical forces (external or internal) cohesively direct the downstream regulation of physiological processes.
Traditionally most of the biological studies have focused on biochemical or electrical signalling events and relatively lesser resources have been dedicated towards exploring the role of mechanical forces in human health and disease. Despite early theories proposed by scientists such as Julius Wolff (Wolff's law [2]) in the late nineteenth century “ that bone in a healthy person or animal will adapt to the loads under which it is placed”, relatively little has been studied about the role of external mechanical forces in maintaining haemostasis. However, recent important developments such as
  • identification of external force dependent regulation of signalling pathways [3]
  • determination of mechanosensing elements of cellular cytoskeleton [4]
  • manipulation of single molecules [5]
have reinstated the importance of external mechanical forces in physiology. As a result more recent investigations have demonstrated that external mechanical forces are major coordinators of development and haemostasis of organisms [6], [7] [8].
'Mechanotransduction' has been traditionally defined as the conversion of mechanical stimulus into chemical cues for the cells and thus altering downstream signalling e.g conformational changes in ion channels might lead to initiation of downstream signalling. However, with the accumulation of new knowledge pertaining to the effects of external mechanical loads on extracellular matrix or a cell or on subcellular structures, it is being widely accepted that mechanotransduction is more than merely a physical switch. Rather it entails the whole spectrum of cell-cell , cell-ECM, and intracellular interactions that can directly or indirectly modulate the functioning of cellular mechanisms involved in haemostasis. This modulation can function at various levels such as organism level, tissue level, cellular level and subcellular level.

Forces in cells and organisms

From biological point of view mechanical forces can be grouped into three categories
  • intracellular forces
  • intercellular forces
  • inter-tissue forces
In the eukaryotic cells these forces are generally generated by the the contractile cytoskeletal machinery of the cell that is comprised of
  • microfilaments : Diameter-6 nm; example- actin
  • intermediate filaments: Diameter-10 nm; example- vimentin, keratin
  • microtubules: Diameter-23 nm; example- alpha and beta tubulin

Actin labeling in single Osteocyte in situ in mouse bone. Source: Aviral Vatsa

Actin labeling in single Osteocyte in situ in mouse bone. Source: Aviral Vatsa
Actin (cytoskeleton) staining of single osteocyte in situ in mouse calvaria (source: Aviral Vatsa)

There are a range of forces generated in the biological milieu (adopted from Mammoto et al [8]): 
  • Hydrostatic pressure: mechanical force applied by fluids or gases (e.g. blood or air) that perfuse or infuse living organs (e.g. blood vessels or lung).
  • Shear stress: frictional force of fluid flow on the surface of cells. The shear stress generated by the heart pumping blood through the systemic circulation has a key role in the determination of the cell fate of cardiomyocytes, endothelial cells and hematopoietic cells.
  • Compressive force: pushing force that shortens the material in the direction of the applied force. Tensional force: pulling force that lengthens materials in the direction of the applied force.
  • Cell traction force: is exerted on the adhesion to the ECM and other cells as a result of the shortening of the contractile cytoskeletal actomyosin filaments, which transmit tensional forces across cell surface adhesion receptors (e.g. integrins, cadherins).
  • Cell prestress: stabilizing isometric tension in the cell that is generated by the establishment of a mechanical force balance within the cytoskeleton through a tensegrity mechanism. Pulling forces generated within contractile microfilaments are resisted by external tethers of the cell (e.g. to the ECM or neighboring cells) and by internal load-bearing structures that resist compression (e.g. microtubules, filipodia). Prestress controls signal transduction and regulates cell fate.
It is the interplay of these forces generated by the cellular cytoskeleton and the ECM that regulate physiological functions. Disruption in mechanotransduction has been implicated in a variety of diseases such as hypertension, muscular dystrophies, cardiomyopathies, loss of hearing, cancer progression and metastasis. Ongoing attempts at unravelling the finer details of mechanosensation hold promising potential for new therapeutic approaches.

References

Saturday, January 5, 2013

Perspectives on Nitric Oxide in Disease Mechanisms


Perspectives on Nitric Oxide in Disease Mechanisms

Nitric Oxide Synthase
Nitric Oxide Synthase (Photo credit: Wikipedia)

Perspectives on Nitric Oxide in Disease Mechanisms

 The Nitric Oxide Discovery, Function, and Targeted Therapy  Opportunities

From Discovery to Innovation
     From Innovation Therapeutic Targets
From Innovation Targets to Clinical Applications
Leaders in Pharmaceutical Business Intelligence, Scotland
aviralvatsa@gmail.com
and
Triplex Medical Science, Trumbull, CT
Larry.bernstein@gmail.com

Leaders in Pharmaceutical Business Intelligence
Aviva Lev-Ari, PhD, RN
Director and Founder
Editor-in-Chief

Friday, November 23, 2012

Overview of new strategy for treatment of T2DM: SGLT2 inhibiting oral antidiabetic agents

Author: Aviral Vatsa PhD MBBS

Type 2 diabetes mellitus (T2DM) is a chronic disease, which is affecting widespread populations in epidemic proportions across the globe 1. It is characterised by hyperglycemia, which if not controlled adequately, eventually leads to microvascular and metabolic complications (Fig 1). Traditionally, T2DM management includes alteration in lifestyle, oral hypoglycemic agents and/or insulin. The present pharmacological approaches predominantly target glucose metabolism by compensating for reduction in insulin secretion and/or insulin action. However, these approaches are often limited by inadequate glucose control and the the possibility of severe adverse effects such as hypoglycemia, weight gain, nausea, and sometimes lactic acidosis 2–4 (Fig 1). Hence the search for new drugs with different mechanism of action and with little side affects is key in providing better glycemic control in T2DM patients and hence offering better prognosis with reduced morbidity and mortality.


Figure 1 (credit: aviral vatsa): Short overview of Type 2 diabetes mellitus (T2DM): complications, present therapeutic approaches and their limitations.

Along with pancreas, our kidneys play a vital role in regulating glucose levels in the plasma. Under physiological conditions, kidneys absorb 99% of the plasma glucose filtered through the renal glomeruli tubules. Majority i.e. 80-90% of this renal glucose resorbtion is mediated via the sodium glucose co-transporter 2 (SGLT2) 5,6. SGLT2 is a high-capacity low-affinity transporter that is mainly located in the proximal segment S1 of the proximal convoluted tubule 6. Inhibition of SGLT2 activity can thus induce glucosuria which inturn can lower blood glucose levels without targeting insulin resistance and insulin secretion pathways of glucose modulation (Fig 2).


Figure 2 (credit: aviral vatsa): Schematic overview of regulation of plasma glucose by sodium glucose co-transporter (SGLT).

Thus inhibition of SGLT2 provides a novel way to modulate blood glucose levels and consequently limit long term complications of hyperglycemia 7,8. Moreover, SGLT2 inhibitors will selectively target the renal glucose transportation and spare the counter regulatory hormones involved in glucose metabolism because SGLT2 is almost exclusively located in the kidneys. This novel way of glucose modulation will likely avoid severe side affects, e.g. hypoglycemia and weight gain, that are seen with present antidiabetic pharmacological agents.
Agents currently under development
Table below gives an overview of the SGLT2 inhibotors in development.
(Credit: Chao et al 2010)


In summary, increasing urinary glucose excretion represents a new approach to addressing the challenge of hyperglycaemia. SGLT2 inhibitors may have indications both in the prevention and treatment of T2DM, and perhaps T1DM, with a possible application in obesity. Further studies in large numbers of human subjects are necessary to delineate efficacy, safety and how to most effectively use these agents in the treatment of diabetes.
Bibliography
  1. Diabetes Atlas. International Diabetes Federation, (2009) at
  2. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. Lancet 352, 837–853 (1998).
  3. Buse, J. B. et al. Effects of exenatide (exendin-4) on glycemic control over 30 weeks in sulfonylurea-treated patients with type 2 diabetes. Diabetes Care 27, 2628–2635 (2004).
  4. Inzucchi, S. E. Oral antihyperglycemic therapy for type 2 diabetes: scientific review. JAMA 287, 360–372 (2002).
  5. Brown, G. K. Glucose transporters: Structure, function and consequences of deficiency. Journal of Inherited Metabolic Disease 23, 237–246 (2000).
  6. Wright, E. M. Renal Na+-glucose cotransporters. Am J Physiol Renal Physiol 280, F10–F18 (2001).
  7. Chao, E. C. & Henry, R. R. SGLT2 inhibition — a novel strategy for diabetes treatment. Nature Reviews Drug Discovery 9, 551–559 (2010).
  8. Ferrannini, E. & Solini, A. SGLT2 inhibition in diabetes mellitus: rationale and clinical prospects. Nature Reviews Endocrinology 8, 495–502 (2012).

Friday, October 19, 2012

Nitric Oxide and Immune responses: part 1


Curator/Reporter Aviral Vatsa PhD, MBBS

Based on: A review by Wink et al., 2011
This is the first part of a two part post

Nitric oxide (NO), reactive nitrogen species (RNS) and reactive oxygen species (ROS) perform dual roles as immunotoxins and immunomodulators. An incoming immune signal initiates NO and ROS production both for tackling the pathogens and modulating the downstream immune response via complex signaling pathways. The complexity of these interactions is a reflection of involvement of redox chemistry in biological setting (fig. 1)

Fig 1. Image credit: (Wink et al., 2011)

Previous studies have highlighted the role of NO in immunity. It was shown that macrophages released a substance that had antitumor and antipathogen activity and required arginine for its production (Hibbs et al., 1987, 1988). Hibbs and coworkers further strengthened the connection between immunity and NO by demonstrating that IL2 mediated immune activation increased NO levels in patients and promoted tumor eradication in mice (Hibbs et al., 1992; Yim et al., 1995).

In 1980s a number of authors showed the direct evidence that macrophages made nitrite, nitrates and nitrosamines. It was also shown that NO generated by macrophages could kill leukemia cells (Stuehr and Nathan, 1989). Collectively these studies along with others demonstrated the important role NO plays in immunity and lay the path for further research in understanding the role of redox molecules in immunity.

NO is produced by different forms of nitric oxide synthase (NOS) enzymes such as eNOS (endothelial), iNOS (inducible) and nNOS (neuronal). The constitutive forms of eNOS generally produce NO in short bursts and in calcium dependent manner. The inducible form produces NO for longer durations and is calcium independent. In immunity, iNOS plays a vital role. NO production by iNOS can occur over a wide range of concentrations from as little as nM to as much as µM. This wide range of NO concentrations provide iNOS with a unique flexibility to be functionally effective in various conditions and micro-environements and thus provide different temporal and concentration profiles of NO, that can be highly efficient in dealing with immune challenges.

Redox reactions in immune responses
NO/RNS and ROS are two categories of molecules that bring about immune regulation and 'killing' of pathogens. These molecules can perform independently or in combination with each other. NO reacts directly with transition metals in heme or cobalamine, with non-heme iron, or with reactive radicals (Wink and Mitchell, 1998). The last reactivity also imparts it a powerful antioxidant capability. NO can thus act directly as a powerful antioxidant and prevent injury initiated by ROS (Wink et al., 1999). On the other hand, NO does not react directly with thiols or other nucleophiles but requires activation with superoxide to generate RNS. The RNS species then cause nitrosative and oxidative stress (Wink and Mitchell, 1998).
The variety of functions achieved by NO can be understood if one looks at certain chemical concepts. NO and NO2 are lipophilic and thus can migrate through cells, thus widening potential target profiles. ONOO-, a RNS, reacts rapidly with CO2 that shortens its half life to less than 10 ms. The anionic form and short half life limits its mobility across membranes. When NO levels are higher than superoxide levels, the CO2-OONOintermediate is converted to NO2 and N2O3 and changes the redox profile from an oxidative to a nitrosative microenvironment. The interaction of NO and ROS determines the bioavaiolability of NO and proximity of RNS generation to superoxide source, thus defining a reaction profile. The ROS also consumes NO to generate NO2 and N2O3 as well as nitrite in certain locations. The combination of these reactions in different micro-environments provides a vast repertoire of reaction profiles for NO/RNS and ROS entities.

The Phagosome 'cauldron'
The phagosome provides an 'isolated' environment for the cell to carry out foreign body 'destruction'. ROS, NO and RNS interact to bring about redox reactions. The concentration of NO in a phagosome can depend on the kind of NOS in the vicinity and its activity and other localised cellular factors. NO and is metabolites such as nitrites and nitrates along with ROS combine forces to kill pathogens in the acidic environment of the phagosome as depicted in the figure 2 below.


Fig 2. The NO chemistry of the phagosome. (image credit: (Wink et al., 2011)

This diagram depicts the different nitrogen oxide and ROS chemistry that can occur within the phagosome to fight pathogens. The presence of NOX2 in the phagosomes serves two purposes: one is to focus the nitrite accumulation through scavenging mechanisms, and the second provides peroxide as a source of ROS or FA generation. The nitrite (NO2−) formed in the acidic environment provides nitrosative stress with NO/NO2/N2O3. The combined acidic nature and the ability to form multiple RNS and ROS within the acidic environment of the phagosome provide the immune response with multiple chemical options with which it can combat bacteria.

Bacteria
There are various ways in which NO combines forces with other molecules to brig about bacterial killing. Here are few examples

E.coli: It appears to be resistant to individual action of NO/RNS and H2O2 /ROS. However, when combined together, H2O2 plus NO mediate a dramatic, three-log increase in cytotoxicity, as opposed to 50% killing by NO alone or H2O2 alone. This indicates that these bacteria are highly susceptible to their synergistic action.

Staphylococcus: The combined presence of NO and peroxide in staphylococcal infections imparts protective effect. However, when these bacteria are first exposed to peroxide and then to NO there is increased toxicity. Hence a sequential exposure to superoxide/ROS and then NO is a potent tool in eradicating staphylococcal bacteria.

Mycobacterium tuberculosis: These bacterium are sensitive to NO and RNS, but in this case, NO2 is the toxic species. A phagosome microenvironment consisting of ROS combined with acidic nitrite generates NO2/N2O3/NO, which is essential for pathogen eradication by the alveolar macrophage. Overall, NO has a dual function; it participates directly in killing an organism, and/or it disarms a pathway used by that organism to elude other immune 
responses.

Parasites
Many human parasites have demonstrated the initiation of the immune response via the induction of iNOS, that then leads to expulsion of the parasite. The parasites include Plasmodia (malaria), Leishmania (leishmaniasis), and Toxoplasma (toxoplasmosis). Severe cases of malaria have been related with increased production of NO. High levels of NO production are however protective in these cases as NO was shown to kill the parasites (Rockett et al., 1991; Gyan et al., 1994). Leishmania is an intracellualr parasite that resides in the mamalian macrophages. NO upregulation via iNOS induction is the primary pathway involved in containing its infestation. A critical aspect of NO metabolism is that NOHA inhibits AG activity, thereby limiting the growth of parasites and bacteria including LeishmaniaTrypanosomaSchistosomaHelicobacterMycobacterium, and Salmonella, and is distinct from the effects of RNS. Toxoplasma gondii is also an intracellular parasite that elicits NO mediated response. INOS knockout mice have shown more severe inflammatory lesions in the CNS that their wild type counterparts, in response to toxoplasma exposure. This indicates the CNS preventative role of iNOS in toxoplasmosis (Silva et al., 2009).

Virus
Viral replication can be checked by increased production of NO by induction of iNOS (HIV-1, coxsackievirus, influenza A and B, rhino virus, CMV, vaccinia virus, ectromelia virus, human herpesvirus-1, and human parainfluenza virus type 3) (Xu et al., 2006). NO can reduce viral load, reduce latency and reduce viral replication. One of the main mechanisms as to how NO participates in viral eradication involves the nitrosation of critical cysteines within key proteins required for viral infection, transcription, and maturation stages. For example, viral proteases or even the host caspases that contain cysteines in their active site are involved in the maturation of the virus. The nitrosative stress environment produced by iNOS may serve to protect against some viruses by inhibiting viral infectivity, replication, and maturation.

To be continued in part 2 ...

Bibliography
Related Posts Plugin for WordPress, Blogger...