Monday, November 4, 2013

In vivo biosensing via tissue-localizable near-infrared-fluorescent single-walled carbon nanotubes

Reported by: Aviral Vatsa


Authors:

Nicole M. Iverson, Paul W. Barone, Mia Shandell, Laura J. Trudel, Selda Sen, Fatih Sen, Vsevolod Ivanov, Esha Atolia, Edgardo Farias, Thomas P. McNicholas, Nigel Reuel, Nicola M. A. Parry, Gerald N. WoganMichael S. Strano

Nature Nanotechnology doi:10.1038/nnano.2013.222

Abstract


Single-walled carbon nanotubes are particularly attractive for biomedical applications, because they exhibit a fluorescent signal in a spectral region where there is minimal interference from biological media. Although single-walled carbon nanotubes have been used as highly sensitive detectors for various compounds, their use as in vivo biomarkers requires the simultaneous optimization of various parameters, including biocompatibility, molecular recognition, high fluorescence quantum efficiency and signal transduction. Here we show that a polyethylene glycol ligated copolymer stabilizes near-infrared-fluorescent single-walled carbon nanotubes sensors in solution, enabling intravenous injection into mice and the selective detection of local nitric oxide concentration with a detection limit of 1 µM. The half-life for liver retention is 4 h, with sensors clearing the lungs within 2 h after injection, thus avoiding a dominant route of in vivo nanotoxicology. After localization within the liver, it is possible to follow the transient inflammation using nitric oxide as a marker and signalling molecule. To this end, we also report a spatial-spectral imaging algorithm to deconvolute fluorescence intensity and spatial information from measurements. Finally, we demonstrate that alginate-encapsulated single-walled carbon nanotubes can function as implantable inflammation sensors for nitric oxide detection, with no intrinsic immune reactivity or other adverse response for more than 400 days.

Thursday, February 21, 2013

Mechanosensation and Mechanotransduction: Our Connection to the Outside World


Author: Aviral Vatsa PhD MBBS
This is the first post in a series of posts on mechanosensation and mechanotransduction and their role in physiology and disease.

Future posts in this category will focus on various aspects of role of mechanosensation and mechanotransduction in human physiology. These aspects will include among others: gene modulation, cellular mechanosensation, tissue regeneration, stem cell differentiation, cancer, disease models, nanomodulation, material science and therapeutics etc.

Based on Zhang et al [1]

Multicellular organisms such as humans require intricate orchestration of signals between cells to achieve global morphogenesis and organ function and thus maintain haemostasis. Three major 'signalling modalities' work in unison intracellularly and/or exrtacellularly to regulate harmonious functioning of the physiological milieu. These 'modalities' namely biochemical molecules, electrical currents or fields and mechanical forces (external or internal) cohesively direct the downstream regulation of physiological processes.
Traditionally most of the biological studies have focused on biochemical or electrical signalling events and relatively lesser resources have been dedicated towards exploring the role of mechanical forces in human health and disease. Despite early theories proposed by scientists such as Julius Wolff (Wolff's law [2]) in the late nineteenth century “ that bone in a healthy person or animal will adapt to the loads under which it is placed”, relatively little has been studied about the role of external mechanical forces in maintaining haemostasis. However, recent important developments such as
  • identification of external force dependent regulation of signalling pathways [3]
  • determination of mechanosensing elements of cellular cytoskeleton [4]
  • manipulation of single molecules [5]
have reinstated the importance of external mechanical forces in physiology. As a result more recent investigations have demonstrated that external mechanical forces are major coordinators of development and haemostasis of organisms [6], [7] [8].
'Mechanotransduction' has been traditionally defined as the conversion of mechanical stimulus into chemical cues for the cells and thus altering downstream signalling e.g conformational changes in ion channels might lead to initiation of downstream signalling. However, with the accumulation of new knowledge pertaining to the effects of external mechanical loads on extracellular matrix or a cell or on subcellular structures, it is being widely accepted that mechanotransduction is more than merely a physical switch. Rather it entails the whole spectrum of cell-cell , cell-ECM, and intracellular interactions that can directly or indirectly modulate the functioning of cellular mechanisms involved in haemostasis. This modulation can function at various levels such as organism level, tissue level, cellular level and subcellular level.

Forces in cells and organisms

From biological point of view mechanical forces can be grouped into three categories
  • intracellular forces
  • intercellular forces
  • inter-tissue forces
In the eukaryotic cells these forces are generally generated by the the contractile cytoskeletal machinery of the cell that is comprised of
  • microfilaments : Diameter-6 nm; example- actin
  • intermediate filaments: Diameter-10 nm; example- vimentin, keratin
  • microtubules: Diameter-23 nm; example- alpha and beta tubulin

Actin labeling in single Osteocyte in situ in mouse bone. Source: Aviral Vatsa

Actin labeling in single Osteocyte in situ in mouse bone. Source: Aviral Vatsa
Actin (cytoskeleton) staining of single osteocyte in situ in mouse calvaria (source: Aviral Vatsa)

There are a range of forces generated in the biological milieu (adopted from Mammoto et al [8]): 
  • Hydrostatic pressure: mechanical force applied by fluids or gases (e.g. blood or air) that perfuse or infuse living organs (e.g. blood vessels or lung).
  • Shear stress: frictional force of fluid flow on the surface of cells. The shear stress generated by the heart pumping blood through the systemic circulation has a key role in the determination of the cell fate of cardiomyocytes, endothelial cells and hematopoietic cells.
  • Compressive force: pushing force that shortens the material in the direction of the applied force. Tensional force: pulling force that lengthens materials in the direction of the applied force.
  • Cell traction force: is exerted on the adhesion to the ECM and other cells as a result of the shortening of the contractile cytoskeletal actomyosin filaments, which transmit tensional forces across cell surface adhesion receptors (e.g. integrins, cadherins).
  • Cell prestress: stabilizing isometric tension in the cell that is generated by the establishment of a mechanical force balance within the cytoskeleton through a tensegrity mechanism. Pulling forces generated within contractile microfilaments are resisted by external tethers of the cell (e.g. to the ECM or neighboring cells) and by internal load-bearing structures that resist compression (e.g. microtubules, filipodia). Prestress controls signal transduction and regulates cell fate.
It is the interplay of these forces generated by the cellular cytoskeleton and the ECM that regulate physiological functions. Disruption in mechanotransduction has been implicated in a variety of diseases such as hypertension, muscular dystrophies, cardiomyopathies, loss of hearing, cancer progression and metastasis. Ongoing attempts at unravelling the finer details of mechanosensation hold promising potential for new therapeutic approaches.

References

Saturday, January 5, 2013

Perspectives on Nitric Oxide in Disease Mechanisms


Perspectives on Nitric Oxide in Disease Mechanisms

Nitric Oxide Synthase
Nitric Oxide Synthase (Photo credit: Wikipedia)

Perspectives on Nitric Oxide in Disease Mechanisms

 The Nitric Oxide Discovery, Function, and Targeted Therapy  Opportunities

From Discovery to Innovation
     From Innovation Therapeutic Targets
From Innovation Targets to Clinical Applications
Leaders in Pharmaceutical Business Intelligence, Scotland
aviralvatsa@gmail.com
and
Triplex Medical Science, Trumbull, CT
Larry.bernstein@gmail.com

Leaders in Pharmaceutical Business Intelligence
Aviva Lev-Ari, PhD, RN
Director and Founder
Editor-in-Chief
Related Posts Plugin for WordPress, Blogger...